Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Hee-Jong Koh

Hee-Jong Koh

Seoul National University, South Korea

Title: Complementary interaction of two starch biosynthesis genes confers a mild sugary endosperm in rice

Biography

Biography: Hee-Jong Koh

Abstract

 

Starch biosynthesis is one of the most important pathways that determine both grain quality and yield in rice (Oryza sativa L.). Sugary endosperm, sugary-1 (sug-1), is a mutant trait for starch biosynthesis. Plants carrying sug-1 produce grains that accumulate water-soluble carbohydrates instead of starch, even after maturity. Although this trait confers improved digestibility and enhanced nutritional merits, sugary endosperm rice has not been commercialized due to the severely wrinkled grains and subsequent problems in milling. We performed chemical mutagenesis on the Korean japonica cultivar Hwacheong, and identified a mild sugary mutant, sugary-h (sug-h). Grains of the sug-h mutant were translucent and amber-colored, and the endosperm appeared less wrinkled than sug-1, whereas the soluble sugar content was high. These characteristics confer greater marketability to the sug-h mutant through normal procedures in hulling and milling of rice grains. Genetic analyses indicated that the sug-h mutant phenotype was controlled by complementary interaction of two recessive genes, Isoamylase1 (OsISA1), which was reported previously, and Starch branching enzyme IIa (OsBEIIa), which was newly identified in this study. These results extend our knowledge of the mechanism of starch biosynthesis in rice endosperm, and facilitate the breeding of sugary endosperm rice for better digestibility